The paper presents an experimental study regarding the treatment of a real textile wastewater using the spinning disc (SD) technology, either individually or associated with an advanced Fenton oxidation step. The SD efficiency was investigated by studying the color, suspended solids, or turbidity removals, at distinctive feeding flowrates (10–30 L/h) and disc rotating speeds (100–1500 rpm
The paper presents an experimental study regarding the treatment of a real textile wastewater using the spinning disc (SD) technology, either individually or associated with an advanced Fenton oxidation step. The SD efficiency was investigated by studying the color, suspended solids, or turbidity removals, at distinctive feeding flowrates (10–30 L/h) and disc rotating speeds (100–1500 rpm
The paper presents an experimental study regarding the treatment of a real textile wastewater using the spinning disc (SD) technology, either individually or associated with an advanced Fenton oxidation step. The SD efficiency was investigated by studying the color, suspended solids, or turbidity removals, at distinctive feeding flowrates (10–30 L/h) and disc rotating speeds (100–1500 rpm
The paper presents an experimental study regarding the treatment of a real textile wastewater using the spinning disc (SD) technology, either individually or associated with an advanced Fenton oxidation step. The SD efficiency was investigated by studying the color, suspended solids, or turbidity removals, at distinctive feeding flowrates (10–30 L/h) and disc rotating speeds (100–1500 rpm
The paper presents an experimental study regarding the treatment of a real textile wastewater using the spinning disc (SD) technology, either individually or associated with an advanced Fenton oxidation step. The SD efficiency was investigated by studying the color, suspended solids, or turbidity removals, at distinctive feeding flowrates (10–30 L/h) and disc rotating speeds (100–1500 rpm).
The paper presents an experimental study regarding the treatment of a real textile wastewater using the spinning disc (SD) technology, either individually or associated with an advanced Fenton oxidation step. The SD efficiency was investigated by studying the color, suspended solids, or turbidity removals, at distinctive feeding flowrates (10–30 L/h) and disc rotating speeds (100–1500 rpm
The paper presents an experimental study regarding the treatment of a real textile wastewater using the spinning disc (SD) technology, either individually or associated with an advanced Fenton oxidation step. The SD efficiency was investigated by studying the color, suspended solids, or turbidity removals, at distinctive feeding flowrates (10–30 L/h) and disc rotating speeds (100–1500 rpm